
Lecture Lecture –– 55

SectionSection--BB

References: John. J. Donovan

Macro Language
and

Macro processor

IntroductionIntroduction
 Features of Macro facility

Features of a Macro FacilityFeatures of a Macro Facility
1) Macro Instruction Arguments:

 The macro facility presented thus far is capable of inserting

blocks of instructions in place of macro calls.

 All of the calls to any given macro will be replaced by identical

blocks.

 This macro facility lacks flexibility: there is no way for a

specific macro call to modify the coding that replaces it.

 An important extension of this facility consists of providing for

arguments, or parameters, macro calls. Corresponding macro

dummy arguments will appear in macro definitions. Consider

the following program:

 Example 2:
.
.
.

A 1, DATA1
A 2, DATA1
A 3, DATA1

.

.

.
A 1, DATA2
A 2, DATA2
A 3, DATA2

.

.

.
DATA1 DC F’5’
DATA2 DC F’10’

.

.

.

 In this case the instruction sequences are very similar

but not identical. The first sequence performs an

operation using DATA1 as operand; the second using

DATA2 . They can be considered to perform the same

operation with a variable parameter or argument. Such a

parameter is called a macro instruction argument or

dummy argument.

 It is specified on the macro name line and distinguished

(as a macro instruction symbol rather than an assembly

language symbol) by the ampersand (&), which is

always its first character. The preceding program could

be written as :

 Source Expanded Source
MACRO Macro INCR has

one argument
INCR & ARG
A 1, & ARG
A 2, & ARG
A 3, & ARG
MEND
. .
. .
. .
INCR DATA 1 Use DATA1 as operand A 1,DATA 1
. A 2,DATA1
. A 3. DATA1
. .

.
.
INCR DATA 2 Use DATA2 as operand A 1,DATA 2
. A 2,DATA2
. A 3. DATA2
.

DATA 1 DC F’5’ DATA1 DC F’5’
DATA 2 DC F’10’ DATA2 DC F’10’

.

.

.

 It is possible to supply more than one

argument in a macro call. Each argument

must correspond to a definition(“dummy”)

argument on the macro name line of the

macro definition.

 When a macro call is processed, the

arguments supplied are substituted for the

respective dummy arguments in the macro

definition.

 Example 3:
.
.
.

LOOP1 A 1, DATA1
A 2, DATA2
A 3, DATA3

.

.

.
LOOP 2 A 1, DATA2

A 2, DATA2
A 3, DATA2

.

.

.
DATA1 DC F’5’
DATA2 DC F’10’
DATA 3 DC F’15’

.

.

.

(2) (2) Conditional Macro Expansion :Conditional Macro Expansion :
 Two important macro processor pseudo –ops ,

AIF and AGO, permit conditional reordering of

the sequence of macro expansion.

 This allows conditional selection of the machine

instruction that appear in expansions of a

macro call.

 Consider the following program:

 Example 4:
.
.
.

LOOP1 A 1, DATA1
A 2, DATA2
A 3, DATA3

.

.

.
LOOP 2 A 1, DATA3

A 2, DATA2

LOOP 3 A 1, DATA1

.

.

.
DATA1 DC F’5’
DATA2 DC F’10’
DATA3 DC F’15’

.

.

.
In this example, the operands, labels and the number of instructions generated

change in each sequence. .
.

Macro Calls Within MacrosMacro Calls Within Macros
 Some macro calls are “abbreviations” of instruction sequences, it seems

reasonable that such “abbreviations” should be available within other
macro definitions. For example

 Example 5:
MACRO
ADD1 &ARG
L 1, &ARG
A 1, = F’1’
ST 1, &ARG
MEND
MACRO
ADDS &ARG1, &ARG2, &ARG3
ADD1 &ARG1
ADD1 &ARG2
ADD1 &ARG3
MEND

 With the definition of the macro ‘ADDS’ are

three separate calls to a previously defined

macro ‘ADD1’. The use of the macro ‘ADD1’

has shortened the length of the definition of

‘ADDS’ and thus has made it more easily

understood.

 Such use of macros results in macro

expansions on multiple ‘levels’.

(4) (4) Macro Instructions Defining MacrosMacro Instructions Defining Macros
 In this manner a single macro instruction might be used to

simplify the process of defining a group of similar macros.

 It is important to realize that the inner macro definition is not

defined (i.e. callable) until after the outer macro has been

called.

 This is because of the method by which definitions are

implemented. For example, a user might wish to define a

group of macros for subroutine calls with some standardized

calling sequence.

 The following example defines a macro instruction DEFINE,

which when called with a subroutine name defines a macro

with the same name as the subroutine.

The individual macros generated bear the names (given through the The individual macros generated bear the names (given through the
argument &SUB) of their associated subroutines.argument &SUB) of their associated subroutines.

 For this program please refer John J.
Donovan.

 Under the topic Macro instructions
defining macros..

 (Program is important)

ApplicationsApplications
 In older operating systems such as those used on IBM

mainframes, full operating system functionality was only

available to assembler language programs, not to high level

language programs (unless assembly language subroutines

were used, of course), as the standard macro instructions did

not always have counterparts in routines available to high-

level languages.

 In modern operating systems such as Unix and its derivatives,

operating system access is provided through subroutines,

usually invoking DLL routines. High-level languages such as

C offer comprehensive access to operating system functions,

obviating the need for assembler language programs for such

functionality.

Scope of researchScope of research
 Making of a Macro

A Good example nicely explained at:

http://www.wowwiki.com/Making_a_macr
o

This is an article on making a macro. A macro is a list of slash
commands. Common slash commands include the following:

 /say (/s)
 /whisper (/w, /talk, /t)
 /reply (/r)
 /emote (/e, /em, /me)
 /dance

http://www.wowwiki.com/Making_a_macr

